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Separation Surfaces in the Spectral TV Domain for
Texture Decomposition

Dikla Horesh and Guy Gilboaylember, IEEE

Abstract—In this paper we introduce a novel notion of separa- [28], [29]. The use of nonconvex regularizers was recently
tion surfaces for image decomposition. A surface is embeddén  proposed in[[2]. Employing sparse representation methads f
the spectral tote_tl—vanathn (TV) thre_e dimensional doman and decomposition was rst suggested in [33]. Two simplisticysa
encodes a spatially-varying separation scale. The methodlawvs . oo )
good separation of textures with gradually varying pattern-size, of revealing the t_e>_(tural parts in images a_re still _Use_d for
pattern-contrast or illumination. The recently proposed total SOMe computer vision tasks. The most basic one is linear -
variation spectral framework is used to decompose the image using a smoothing kernel, such as a Gaussian, and subgractin
into a continuum of textural scales. A desired texture, witlin a  the smoothed image from the input image. Naturally edges
scale range, is found by tting a surface to the local maximal o textures are mixed. A somewhat more reliable method is

responses in the spectral domain. A band above and below thet v ed ina d .. h bilateratirt
surface, referred to as the Texture Stratum de nes for each 'O @PPly €UgE-preserving denoising, such as bilaterafi 3

pixel the adaptive scale-range of the texture. Based on the [35], and subtract the result from the input image.
decomposition an application is proposed which can attenue u+v+w Model. In [4] a model decomposing an image into

or enhance textures in the image in a very natural and visuat  struyctureu, texturev, and noisew was proposed using dual
convincing manner. norms (negative Sobolev and Besov norms) for the texture and
Index Terms—Total variation, spectral TV, image decompo- noise parts. An analysis of the three-part decomposition ca
sition, image enhancement, nonlinear eigenfunction ana#ys, pe seen in[[20] and a recent approach using non-linear PDE's
spatially varying texture. for structure-texture-edge decomposition is describef@@j.
Multiscale Model. It was realized quite early on that
|. INTRODUCTION several textures of different scales can appear in an image a

ECOMPOSING an image into meaningful componenghould be decomposed separately. Multiscale decompositio
Dis an important and challenging inverse problem iHSING several'V L2 (ROF [30]) decompositions, was  rst
image processing. The general concept of structure-ext§tggested in [34]. Some features interpreted as “texturef’ i
decomposition is that an image can be regarded as compo@¥gn scale can be interpreted as “structure” ata ner seide
of a structural part, corresponding to the main large objecionventional ROF was used the separation was not optimal,
in the image, and a textural part, containing ne detaildnixing some structure in the texture. Gillés [19] combined
usually with some periodicity and oscillatory nature. IrmagMeyer's decomposition model [25] with a Littlewood-Paley
decomposition is a preprocessing stage, which can be edsenffer. to extract a certain class of textures in an image. &hi
for many image processing and computer vision tasks suéis works well for synthetic images, it is not ideal for some
as segmentatior [10], content based image retriéval [32]€al world images. Zhang et al. [37] proposed a new frame-
feature extraction and classi cation [14] and restoratand Work called Rolling Guidance lter. This technique consist
analysis of ancient documents [12]. We rst brie y recalleth of an iterated improved variant of the bilateral Iter whidh

main approaches related to image decomposition (focusing@ntrolled by a larger support linear smoothing kernel.fHig
variational methods). quality results were shown i [37]. We will compare our work

also to this state-of-the-art technique and show its litiaites,
especially when there are gradual changes in pattern size or
contrast.

u+v Model. Animagef can be decomposed fis= u+Vv,  Continuous Model. The spectral TV decomposition, ex-
where u represents image cartoon or geometric (piecewisgined in details below, can be seen as a generalization to
smooth) component andrepresents the oscillatory or textureghe continuum of multiscale decomposition, with in nitesil
component of . This motivated([25] to suggest teV. G scale precision which can be related to the eigenvalue of the
variational model where the minimization erIdSNIth a low nonlinear eigenva]ue prob|em induced by the regu|arizee (S
total-variation energy and with a low integral norm, referred details hereafter). In this case the input image is an iategr
to as aG-norm, which favors oscillatory signals. Suggestiongyer all scales. In practice the scale (time) step is nitel an

to implement Meyer's model were given inl[3], [36]. Manysyummation of quantized scales is performed.
extensions and variations to the model with alternativenrsor

adapted for textures were proposed, suchlas [5], [15], [24], o )
B. Contribution and paper outline

A. Structure-texture and Multiscale Decomposition
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A Linear Example:Let us examine the functional
z

J(u) = ir u(x)j%dx;

NI =

wherer is the gradient. The convex functional induces an
operator through its subgradient. Here the subgradienhi@n
case single valued) {®u) = u ( denotes the Laplacian).
The corresponding eigenvalue problem is

i u= u:
(a) Separation surface and stra- (b) Natural rock strata . . . .
tum visualization In the one-dimensional case, with appropriate boundary con

. ) . ditions, functions of the fornu = sin(!x ) are eigenfunctions
Figure 1 Geological analogy o_f the texture encoded as, corresponding eigenvalues= ! 2.
stratum in the spectral TV domain. Thus Fourier frequencies naturally emerge as solving an

eigenvalue problem related to a quadratic smoothing convex

the TV transform[[18]. Using a geological analogy, the tegtu functional.
is encoded by a stratum, with a surface as center-line, in thdn [17], [18] an image decomposition and ltering frame-
3D spectral TV domain, see visualization in Fig. 1. It is weNvork was suggested. It presents a notion of generalized
adapted to the image and can cope with gradually changipgnlinear eigenfunctions which are used to de ne forward an
textures with respect to many parameters such as sizeasontinverse TV transforms. This can be used to decompose the
and illumination. Having de ned a general desired scalegeg image into well de ned scales and allows a new variety of
the method is automatic. A second contribution is a texturéering methods.
processing approach which can enhance or attenuate texture
in an easy manner with very vivid and natural looking resulty - spectral TV

The outline of the paper is as follows: in Sectioh Il we . .
describe the convex nonlinear eigenvalue problem and thén [18] a non-copvenﬂo_nal way_of de ning a transform
spectral TV approach. Sectidnllll presents multiscale n‘ecothrough a part|al-d|ff(=,_re_nt|al-equatlon. (PDE) s suggest
position and orientation analysis based on spectral TVs Tlﬁased on the total-variation éTV) functional:
part was rst presented in a conferentel[21]. We then proceed
to the main contribution of the paper, Sectibn] IV, where

a surface-based Qecomp(l)_sm(_)n 1S mtroducegl. 'II? Seagﬁznv%ereDu denotes the distributional gradient of The corre-
a textlIJre lprqcessmg app |Icat|on s proposed, illustray sponding gradient descent of the functional, known as-total
nafural color image examples. variation ow [d], is formally written as:

J(uy= jDuj; )

Il. PRELIMINARIES @u=diy DU . jn(0;1)
In this section we summarize the essential theory concgrnin 8:1 =0: o) on(0;1) @ ®3)

non-linear eigenfunctions induced by convex functiontis,

@n~ 2 ) _
spectral TV framework and Gabor Iters (used as scale- u(0:x) = (x); nx2

orientation descriptors). where is the image domain (a bounded setRl' with
) ) ) Lipschitz continuous boundar@® ). The TV transform is
A. Nonlinear Eigenfunctions de ned by:
Classical linear eigenfunction analysis has shown to pro- (t;x) = ug (t; x)t; 4)

vide many state-of-the-art algorithms in signal procegsin . . o )
computer vision and machine-learning. Some examples d¥€reus is the second time derivative of the solutio(t; x)
segmentation[[31], clustering [27], subspace clusterizg [ ©f @)- The inverse tranaform IS:

and dimensionality reduction [[6]. Eigenfunctions of an op- .

erator can be viewed as the operator's inherent atoms with F(x)= 0 (tx)dt+ ®)
an intrinsic scale represented by the respective eigeavalu _ R i L
Recent studies [7][.[18] indicate that a generalized theary Wherg_f T f(),()dx is the mean value of the |n|t|§1I
be developed for the convex nonlinear case. condition. Filtering is performed using a transfer funaotio
Nonlinear eigenfunctions induced by a convex function&l (1) 2 R: ~
emerge by the followingnonlinear eigenvalue problem 1
fy(x):= (t;x)H (t)dt + f: (6)
u 2 @Ju); (1) 0

where J(u) is a convex functional an@®Ju) is its subd- The spectruns’ (t) of the input signalf (x) corresponds to
ifferential. A functionu admitting Eq. [L) is referred to astheL' amplitude of each scale:

an eigenfunction with a corresponding eigenvalueNVe can ‘ _ _

brie y study the linear case, to get some intuition. S ()= k (k= (Ex)jdx: ()
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Figure 3: Concentric circles image (left), orientation nafp
8 Gabor lters response (middle) and orientation map of 30
Gabor lters response (right).

C. Gabor Filters

A Gabor lter bank is a set of regularly spaced lters
that roughly mimic the behavior of the human visual system
(HVS) for texture detection. According to this model, the
HVS perceives the image through a set of Itered images,
so that each image contains some unique visual information
over a narrow range of orientation channel. In that manner,
AN y Gabor Itering has been shown to be a good tting to this

(dt=0:4 (e)t=1:6 fHt=5:8 model, providing optimal localization of image details in a
Figure 2: Zebra image (top left), TV spectrum of the imagi@int spatial and frequency domain [13]._[22]. The Gabor

with separated textures marked in different colors (toptig Wavelet de nition is

and spectral decomposition of the zebra image to textures, , . . _ 1 1, %2 ¥ .

displaying integration over time (middle) and certairs g(x;y) = 2 yexp[ E(?Jr 7)+2 W] 9)
(bottom).

(a) High-pass (b) Band-pass (c) Low-pass

¥ = XCoS(—)+ ysin(—);y= in(—)+ S
() * ysin(gr)iy= xsin(z0)+ ycosG)
10)
Two signi cant results were shown in_[18] for this trans- controls the orientation of the lIters, with M being the tbta
form: number of different orientations and/ scales the center of

Eigenfunctions as Atoms:Let f (x) be a function which the lter in the frequency domain.

admits the nonlinear eigenvalue problérh (1) = u), for

the TV functional. Then the transform yields a measurd!- M ULTISCALE DECOMPOSITIONUSING SPECTRAL TV

(single impulse), multiplied by (x), at timet = 1= and In this section we show how one can use spectral TV for
is zero for all othert: (t;x) = (t 1= )f (x), where multiscale decomposition and multiscale orientation ysial
() is the Dirac delta function. This part was rst presented by the authors in a conference
Relations to TV- ow: The TV ow solutionu(t) is given [21]. In this work we extended the common structure and tex-
by: 7 ture decomposition to multi-scale texture separation iheor
1 . to get all textures, the coarse and ne-scaled. The ori@ntat
u(t) = . HY() (ix)d +f; (8) of the different texture layers was separately charadriz
using the Gabor lters bank, generating the scale-oriéomat
. o: 0 <t descriptor. Precise orientation mapping can be useful for
HY()= —tt <1 - analysis and inner texture actions and synthesis of imate wi

complex textures content.
The rst result relates to nonlinear spectral theory, which

has attracted increasing interest lately, see &lg.[[7], &8 A A Necessary Condition for Perfect Separability

[8] in the segmentation and learning context. | th lity relation bet E a4
The second result shows that the framework is ageneraliza-n [9] an or' ogonality relation between Eq. [2), andu

tion of standard TV Iters and that many other Iters related” established:

to the functional can be designed. hu(t); (t)i =0;8t2 (0;1 ); (12)

An example of different spectral components and of spect%hereh; i denotes the.2 inner product over the domain,

'mage It_erln_g can be seen in Fig] 2. A zebra image I?Jsing the above relation and the one given[ih (8) a necessary
shown with its spectrum in different colors to demonstratéeondition for perfect separability of eigenfunctions cae b
the integration intervals of the's, using [6) withH =1 in P P 9

the desired interval and O otherwise, appearing respdaptivghown:

in the ltered images. The contrast is enhanced for bett®roposition 1. Letf 1(x), f2(x) admit the eigenvalue problem
visualization. @), with J the TV functional2), and 1, » the corresponding
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Figure 4: Separating 1D orthogonal signals. Figure 5: Separating 1D oscillating uncorrelated signals

eigenvalues (1 > ). Then forf = f; + f, a necessary orthogonal oscillating signals are combined. Their coradin
condition to have spectrum slightly changes, compared to the original isdlat
1 1 signals, as a result of the overlap. However they can still
M= (t —1)f1(x) + (t _z)fZ(X); (12) pe perfectly separated using spectral TV, while the stahdar
TV has signi cant artifacts and the signals are not well
separated. We use the projection algorithm of Chambiollp [11

;i fai =0: to implement the TV- ow time steps [18]. For more details,
Proof. Let us assume Eq_{IL2) holds ahich(x); f(x)i & 0. see http://guygilboa.eew.technion.ac.il/code/.
We expressu(t;) using [8), witht; = il (note that
H'(t])=0): B. Image Decomposition
! Decomposition using spectral TV was applied to textured
Ut) = HU() (50d = HU () () : aito g

images. The decomposition can be done to as many different
layers as required, limited numerically only by the chosen
time step (the theoretical formulation is continuous in)m

t1

From Eq. [(I1) we have

hu(ty): (t1)i =0; An example of such image decomposition can be seen in
Fig.[@. A game board image is shown with its spectrum in
and therefore different colors to demonstrate the separation points ef th
_ i C - decomposition (or integration intervals of thés, using [6)
H' (t2) (t=0)H f =0 : : 9 ! .
(t2) ( ALEORE ' with H = 1 in the desired interval and 0 otherwise) appearing
which contradicts our assumption. O respectively in Fig[d7: the wood pattern , the game board

Note that in the case of perfect separability, Ek:TL](lzIn

simple spectral lItering [(B) withH (t) = 1 for t <t and manually chosen. However, inl[5] it was done automatically

0 otherwise, where 2 (1= 4;1= .2)’ can pe rfect!y separat_gfor structure-texture decomposition using correlatiotwaen
f1 andf,. Examples demonstrating the signals” separabili e texture and the residual structure in each level. In the

n 1D are shown in F'QSDEI'S' Separatlon of t_he larger sc ®xt section of this work we explore the automatic texture
signal is performed usind(6) witHl (t) a step signalf(0; 1g separation

values) as superimposed in red on the combined spectrun? '

plot (bottom of Figure§1#15 (b)). In Fi@l] 4 two well-sepaxate ) ) )

orthogonal signals are shown, their spectrum, Eqg. (7), has d- Scale-Orientation Descriptor

peak for each signal, and the combined spect@ifh* B)(t) After decomposing the image we generate the scale-
is the sumSA(t) + SB(t). Decomposition using spectralorientation descriptor (SOD) for each texture level by yiull
TV yields a perfect separation. We can see also the optinmhpping its orientation, creating a multi-valued orieiatat
possible result of standard TV regularization for comparis descriptor for each pixel. This was achieved using the Gabor
Note that the standard TV does not yield perfect separatidier bank. The Gabor Iter response was calculated in 30
and the decomposition mixes both signals. In Fiy. 5, twarientations M = 30; = 0;1;:::;;30), spanning 180 and

es and the structure with the round game pieces. In this
ample, the separation points of the decomposition were
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Figure 6: Game board image (left) and TV spectrum of thg
image with separated textures marked in different colaghty

Figure 8: Compared method [19] decomposition result for
game board image to 3 scales (top) and Gabor orientation
visualization (bottom)

nd the spectral time band of the desired texture. We then
determine the exact spectral laye) or each pixel in a global
manner to ensure smoothness of the extracted texture, under
the assumption of texture being smooth and continuous. We

Figure 7: SOD of Game board image (FId. 6). Our mul§€ ne a band surrounding the surface to capture the entire
scale decomposition of the image (top) and the correspgndfi§atures of the desired texture. We calkitatum In geology

orientation maps (bottom). (The contrast is enhanced fiebe and related elds, a stratum is a layer of sedimentary rock or
visualization.) soil with internally consistent characteristics that idigtiish

it from other layers. Similarly, in our case, the stratum nies
a certain texture, distinguished from other by its featuies

4 spatial frequencies for ner and coarser scales. In Fig. @nsists of the spectral layers forming the desired texiore
presented a concentric circles image (left) and the coloréach pixel. A gure simulating the separation surface can be
orientation map of 8 (middle) and 30 (right) Gabor lItersseen in Fig[lL, as well as an image of natural rock stratum.
response. In each scale, the orientation giving the maximum
response was .selected, .and the maximum_of the 4 scales wWas\nalytic Example
taken to describe the orientation of each pixel. . - .

We begin by examining an analytic example to understand

. An example O.f such scale-orlenta_u_on descriptor can be S‘E € surface tting process. It is well established that digke
in Fig.[@. In this gure, decomposition of the game boar

image (Fig.[6) to three scales is shown, together with tr(la(leementary structures for the Ty fu_n ctlona_l. They satisfy t
. . . T elgenvalue problem11) which implies their shape stays the
corresponding orientation mapping images. We can observ

i ! -~“same during a TV gradient descent evolution (TV- ow [1]).

the great separation of the different layers as seen in : i . . .

. . oreover, the eigenvalue of a disc of radiuand heighth is
colored orientation gures as processed from the Gaborrslteinverse roportional to those measur@s [i]] [25]
response. The orientation in each pixel is taken from theoGab prop = '
scale which gave the strongest response, usually corrdsmpn / 1. (13)
to the texture coarseness. The result of Gilles decompasiti hr’
[19] for this image are on Fid.I8, as can be seen, the textuigere in the spectral TV domain we have the discs appear at
nicely appear there in different scales but the differextitees scalet = 1/ hr. We would like to analyse the image in Fig.

are not separated. [@, containing synthetic discs in varying size and contrhst.
order to do so, we will recall two properties of spectral TV
IV. SEPARATION SURFACE [18]:

We now present the novel notion of the separation sun‘ac,%c.mtr""St change.

The texture decomposition so far was done assuming that f (x) I af(x); (t;x)! (t=a;x); S(t)! S(t=a):

our texture is homogeneous and can be separated at a certain

con guration which ts the whole image. However, that is notSpatial scaling (2D)

the situation in many natural images, in which, due to chaggi | . VA Cav)- I 1 .
texture, lighting conditions, or perspective, the desiedure Fogt flag: (x) ! a (atax); SO a “S(a:

can not be decomposed in the same con guration for ther example, for an image which is half the size of the origina
entire image. For that purpose we introduce the separatiomage, we have a = 2.

surface. It is a decomposition con guration, changing in a The effect of the contrast change in our example is that
continuous manner in the image according to the textutbe darker the discs (lower contrast), their scale is lowke

We rst characterize the different textures in the image teffect of the scale change is that the smaller the discst thei
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Figure[10 illustrates the proposed algorithm of the sejmarat
surface. Zebra image was taken, to extract the stripesrtextu
It can be vividly seen that for coarse stripes texture, ltitees

are taken, and larger separation band accordingly. Theubutp
is the two separated image layers, of the zebra stripes @&nd th
image residual. One can see that all the stripes are exdracte
(@) Input image (b) Max Phi Value (c) Max. Time  coarse and ne, with high and low contrast, while succes$gful

Figure 9: Input image of discs varying in size and contrat (@reserving the edges in the residual image.
the maximal value (b) and the evolution time (c)

‘\@"

C. First Order Surface Examples

. . avourably, we work with rst order surfaces, since it allw
scale is lower. In this example one can see how the scale an&: y

the maximal value gradually changes with size and contras N to better regulate the data and dismiss outliers, andadue t

: . . Its robustness. Later we show that it can be generalized to
Following this analytic example we can understand the sakct ; . .
. : . surfaces of higher order. Let us examine a synthetic example
TV behaviour of different images and textures.

A texture was taken of the Brodatz texture database, and was
. added a pattern of circles horizontally varying in contragd.

B. Algorithm [. In this example, we can see in the separation band image
We present a separation surface algorithm using the TNat the base texture and the circles are not separatedl# sca
spectral framework. The idea is that natural textures ate rand the tted separation plane and the band taken, manage to

homogeneously distributed in scale and space, instead thpture the entire circles features while including jusitaob
continuously vary in the image. Under that assumption vthe base texture, and only on the left of the image, where the
suggest a decomposition con guration, changing in a cogentrast of the circles is low and their spectral scale islaim
tinuous manner in the image according to the texture. The that of the base texture. Our separation result is verylgoo
spectral framework allows a straightforward way to achiewend highly resembles the original textures. Comparisoiid/o
such complex decomposition. The general approach can Gand to RGF are shown where in both cases the separation is

described as follows: not good and residual of the textures vividly remains in both
1) Compute the spectral componen(s) and the spectrum the layers. Another example is shown on Eig. 12 of streed,tile
S(t). one can see the pattern is homogeneous in nature but in the

2) Manually or automatically, analyze the spectrum anighage it is linearly changing due to perspective point ofwie
choose the spectral componentft), t; t t,, We decomposed that image using the spectral TV ltering,
among which the desired texture stretches. and took the max time mapping. We can see it captures the

3) Create a salient time map(x): for each pixelx, take linear change in the vertical direction of the image. Thearpp
t which maximizes (t;x) within the ranget 2 [t1;t,]. side is far from the photographer, thus details are smaltlaad

4) Filter T(x) to enable good surface tting. evolution time is short. The bottom of the image is closesthu
5) Fit a surface using regression to the correspondingtails are coarser and the resulting evolution time is dong
Itered time mapping. Taking the stratum accordingly, we capture the entire textu

6) Calculate the bands below and above the surface to geone image and the structure in another image, with sharp
the integration times of the desired texture in each pixe#dges, and no tiles remainder. We compared this result to the
7) Reconstruct the desired texture layer by integrating ovetate-of-the-art RGF result [87] which suggest a multiesca

the texture stratum, using: decomposition scales, we show here the 2nd and 3rd scales.
Z, In both of them, there can be seen a difference between the
fu(x)= H(t;x) (t;x)dt; (14) lower and upper sides of the image. In the 2nd scale there
0 are many tiles edges, mostly on the lower side of the image,
v 1 (t;x) 2 stratum and in the 3rd scale, the structure edges are already smeared
H(t;x) = : : ;
0 else especially at the upper side of the image.
Notes

We take the maximum among the selected spectraP- Generalization to Surfaces

components under the assumption that in the scale rang&Ve now show the general approach of separation surface or
of the desired texture, it is dominant and therefore itstratum extraction. We use this general approach whenedkesir
response on those spectral components is high, andteatture is more complex and does not linearly change in the
most times, higher than the other patterns in those scalesage space. In this case we will perform the exact same
Filtering of the maximal can include omitting values actions to nd the separation plane, but instead of tting a
on image boundaries, taking only values at limited plane to the texture Itered max. time data, we t a surface.
percentiles (we used percentile range of 85-95) etc.. We present here a simple method for surface tting, using
The band width is set according to the scale of the surfalmeal linear regression, in FI[g1L3. In this example, we addled

at each image location. The band is wider at highelisks to an image of concentric circles with changing radius
spectral scales, due to smear effect with time (Eig. 11(c)Me can see in the separation band image that the disks and
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Figure 10: Algorithm ow of the separation surface

the ne scales circles are at the same spectral scale, howetiee stripes, the other zebra features, such as nose and eyes
their spatial location in the image is different, and songsah maintained their color.

separation surface, the two textures are perfectly segwhrat
We can see a comparison to separation at a specic tirge
(scale) for the whole image, as was done in our previous
work [21]. In this case, while not all the disks features are Another application is texture donation, in which a degrhde
captured in layer 2, the circles features are already coedai image is enhanced and its ne texture is recovered by magchin
in that layer, meaning that separating at any certain s@ale @& Prior out of a set, using our scale-orientation descriptor
not bring to a perfect separation. More comparisons are & get a perfect patch match and visually good recovery of
TV-G and to the state of the art RGE [37], which both faithe image. In Figl 17 we can see a hair example, on the left
getting good separating result. Another example can be sd@@ge a degraded hair sample is shown, in the middle is the
in the algorithm description (Fig_10), where in the zebrgpatching hair texture donor, selected out of many hair prior
image, the Stripes were very nice|y Separated from its &trac Its mirror image was taken for a texture match. On the r|ght,
The separation surface can be optimally found in differeffie recovered hair image, composed of the degraded texture
manners, according to the texture's features. One of themPigtch and decomposed ne scale texture of the donor patch.
to use the Gabor lIters in order to nd a separation surfacé/e can see the recovered patch inside the original hair image
for textures with de nite texture orientation. Another apt t0 see how natural it looks.

is to use the Gaussian Mixture Model in order to differeetiat VI. CONCLUSION

textures with different distribution in space and time, addpt
the separation surface to it.

Texture Donation

A novel concept of separation surface was introduced,
depicting a stratum of a desired texture, not necessaritydio
geneous in space and scale. The surface was found using re-
) . gression of the maximal responses in the spectral TV domain.
A. Texture Manipulation The surface can be tted using methods other than maximal

Following an ef cient texture separation, we can manipelatresponse, such as the Gabor Iters for orientated textures,
the different image layers in order to create sub-imagdhe Gaussian mixture model for a mixture of textures with
with enhanced texture or reduced texture. For example, different distribution in space and scale. Image decontiposi
Fig 14 we separate the faces only, maintaining the shasping a separation surface can be very bene cial in cases
stones' borders, and then, manipulate their level in th@uwut where the texture varies within the image, while preserving
image to get enhanced or depressed facial features. In Rig.characteristic. It can separate mixed textures in alhigh
I3 another texture manipulation example is shown, wheaecurate manner, compared to state-of-the-art methods. An
the wood texture in the game board image is depressed amplication of texture manipulation was presented, in Whic
enhanced to a desired level. In the zebra image in[Eig. 16 the selected textures in the image can be attenuated, esthanc
stripes were extracted as depicted in Eid. 10, then by usingmaeven inverted, in a naturally looking formation. In a figu
mask of the zebra itself, the stripes were enhanced and tlaork, we plan to examine additional methods to automaticall
inverted, so that the brown and white colors were replacddrm the surface. We would also like to broaden the use of
Note that because of the stratum de nition, including mpstimultiscale decomposition to other applications.

V. APPLICATIONS
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(a) Synthesized input image (b) Max. time

band width
-

o

0.5 1 15
t

(c) Band width (d) Separation band

(e) Texture 1 - original (f) Texture 2 - original

(g) Decomposed layer 1 - proposed(h) Decomposed layer 2 - proposed

(i) TV-G, layer 1 @) TV-G, layer 2

(k) RGF, layer 1 () RGF, layer 2

Figure 11: Separation plane of a synthetic example
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