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Abstract Semi-inner-products in the sense of Lumer
are extended to convex functionals. This yields a Hilbert-
space like structure to convex functionals in Banach

spaces. In particular, a general expression for semi-inner-
products with respect to one homogeneous functionals
is given. Thus one can use the new operator for the

analysis of total variation and higher order functionals
like total-generalized-variation (TGV). Having a semi-
inner-product, an angle between functions can be de-

fined in a straightforward manner. It is shown that in
the one homogeneous case the Bregman distance can be
expressed in terms of this newly defined angle. In addi-

tion, properties of the semi-inner-product of nonlinear
eigenfunctions induced by the functional are derived.
We use this construction to state a sufficient condition

for a perfect decomposition of two signals and suggest
numerical measures which indicate when those condi-
tions are approximately met.

Keywords Semi-inner-product · Total variation ·
Nonlinear eigenfunctions · Image decomposition

1 Introduction

Formulating image-processing and computer-vision tasks

as variational problems, has been used extensively, with
great success for denoising, segmentation, optical flow,
stereo matching, 3D reconstruction and more [3,18,16].

In those cases regularizing functionals are used to avoid
non-physical solutions and to overcome problems re-
lated with noisy measurements. For images, depth and

optical-flow maps, and many other modalities - the sig-
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nals have inherent discontinuities. Therefore, an ap-
propriate mathematical modeling should account for
that. One-homogeneous functionals, specifically based

on the L1 norm, can cope well with discontinuities. The
most classical one is the total variation (TV) functional
as first introduced for image processing in [37] and,

in recent years, the proposition of total-generalized-
variation (TGV) [9] which has increased the applicabil-
ity of such regularizers from essentially piecewise con-

stant to piecewise smooth solutions.

Recently, there is an emerging branch of studies try-

ing to use functionals in alternative ways, broadening
their analytical scope and usability [25,8,13]. In this
context solutions of nonlinear eigenvalue problems in-

duced by the regularizer are assumed as the fundamen-
tal structuring elements. A nonlinear spectral theory is
developed, where operations such as nonlinear low-pass

and high-pass filters can be performed.

In this paper we introduce an additional necessary

ingredient in nonlinear spectral analysis of functionals,
which is a weaker form of the inner-product to Banach
spaces. It is referred to as a semi-inner-product and

was first introduced by Lumer in [32]. We define the
properties of a semi-inner-product for functionals and
present the formulation for the one-homogeneous case.

We then introduce a notion of semi-inner-products of
degree q, where for q = 1/2 this definition provides
a useful construct. Properties of semi-inner-products

in the case of nonlinear eigenfunctions are discussed,
where things simplify considerably. Finally, we connect
these new notions to the problem of image decomposi-

tion, see e.g. [34,38,4,5,27,39]. A necessary condition
for perfect decomposition is stated and soft indicators
of how well two signals can be decomposed using a reg-

ularizer and nonlinear spectral filtering are formulated.
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1.1 Main contributions

The main contributions of the paper are:

1. Defining the properties of semi-inner-products for
general convex functionals from which angles and

orthogonality measures, with respect to a functional,
can be derived.

2. Proposing a semi-inner-product formulation for the

case of one-homogeneous functionals,

[u, v]J := ⟨u, p(v)⟩J(v), p(v) ∈ ∂J(v).

3. Extending semi inner products to be of degree q and

showing the applicability for q = 1/2.
4. Showing that in the case of J being one-homogeneous

the Bregman distance [10] can be related to the an-

gle between the functions u and v by

DJ(u, v) = J(u) (1− cos(angle(u, v))) .

5. Connecting the semi-inner-product to image decom-
position through the recently proposed variational

spectral filtering approach [25] and presenting a suf-
ficient condition for perfect decomposition of func-
tions admitting the nonlinear eigenvalue problem

(9), (in Th. 2).
6. Proposing two soft measures to estimate when a

good decomposition is expected and validating these

through numerical experiments.

2 Preliminaries

We will now summarize four mathematical concepts

and notions which are at the basis of this manuscript:

1. The semi-inner-product of Lumer.
2. Convex one-homogeneous functionals and their unique

properties.
3. Functions admitting a nonlinear eigenvalue problem

induced by a convex regularizer.

4. A recent direction suggested in [25] of analyzing and
processing regularization problems using a nonlin-
ear spectral approach.

We will see at the last section how all these components

are brought together in the analysis of signal decompo-
sition based on regularizing functionals.

2.1 Semi-inner-product

In [32] Lumer introduced the notion of semi-inner-product
(s.i.p.), where Giles [28] refined it by asserting the ho-
mogeneity property for both arguments. Semi-inner-

products have been used in the analysis of Banach spaces

[11,21] and in recent years extending Hilbert-space-like

concepts in the context of machine-learning and clas-
sification [20,40,31]. In general, a s.i.p. is defined for
complex-valued functions. Here we restrict ourselves to

real-valued functions and follow the definitions of [20].

Definition 1 (Semi-inner-product) Let (X , ∥·∥) be
a real Banach space. A semi-inner-product on X is a

real function [u, v] on X × X with the properties:

1. (Linearity in the first argument)

[u1 + u2, v] = [u1, v] + [u2, v],

2. (Homogeneity in the first argument)

[αu, v] = α[u, v],

3. (Norm-inducing)

[u, u] = ∥u∥2,

4. (Cauchy-Schwarz inequality)

[u, v] ≤ ∥u∥∥v∥,

5. (Homogeneity in the second argument)

[u, αv] = α[u, v].

Giles [28] has added the fifth property (Homogeneity

in the second argument), arguing that in the case of
norms this does not impose additional restrictions and
increases the structure. In the proposed generalizing to

functionals, in some cases this condition will be omit-
ted. In [28] a semi-inner-product for Lp norms ∥u∥Lp =(∫

Ω
|u(x)|pdx

)1/p
, 1 < p < ∞ was proposed

[u, v] :=

∫
Ω

u(x)v(x)|v(x)|p−2dx
1

∥v∥p−2
Lp

. (1)

2.2 One-homogeneous functionals

Let J(u) be a proper, convex, lower semi-continuous
regularization functional J : X → R+ ∪ {∞} defined
on Banach space X . For J which is a one homogeneous

functional we have

J(αu) = |α|J(u), α ∈ R. (2)

We assume that J(u) > 0 for u ∈ X \ {0} (as done for

instance in [13]). This can be achieved by choosing X
restricted in the right way (note that the null-space of a
convex one-homogeneous functional is a linear subspace

of X , [8]). E.g. in the case of total variation regulariza-
tion we would consider the subspace of functions with
vanishing mean value. The general case can be recon-

structed by adding appropriate nullspace components.
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For the spectral representation, defined hereafter, we

assume that the gradient descent equation, based on J ,
is well posed and that the initial condition f admits
J(f) < ∞ and ∥f∥L2 < ∞.

Let p(u) ∈ X ∗ (where X ∗ is the dual space of X )
belong to the subdifferential of J(u), defined by:

∂J(u) :=
{p(u) ∈ X ∗ | J(v)− J(u) ≥ ⟨v − u, p(u)⟩, ∀v ∈ X} ,

(3)

where ⟨·, ·⟩ is the duality product from X × X∗ to R.
We denote p(u) ∈ ∂J(u), where an element p(u) is re-
ferred to as a subgradient. For convex one homogeneous
functionals it is well known [22] that

J(u) = ⟨u, p(u)⟩, ∀p(u) ∈ ∂J(u). (4)

And also, for all p(u) ∈ ∂J(u), R ∋ α ̸= 0, we have

sgn(α)p(u) ∈ ∂J(αu), (5)

where sgn(·) is the signum function. From (3) and (4)

we have that an element in the subdifferential of one-
homogeneous functionals admits the following inequal-
ity:

J(v) ≥ ⟨v, p(u)⟩, ∀p(u) ∈ ∂J(u), v ∈ X . (6)

In later sections we need a slight extension of this prop-

erty, where the bound is with respect to the magnitude
of the right-hand-side. Since J(−v) = J(v) we can also
plug −v in (6) and get the bound J(v) ≥ −⟨v, p(u)⟩,
hence

J(v) ≥ |⟨v, p(u)⟩|,∀p(u) ∈ ∂J(u), v ∈ X . (7)

One-homogeneous functionals also admit the trian-
gle inequality:

J(u+ v) ≤ J(u) + J(v). (8)

This can be shown by J(u + v) = ⟨u + v, p(u + v)⟩ =
⟨u, p(u+v)⟩+⟨v, p(u+v)⟩ and using (6) we have J(u) ≥
⟨u, p(u+ v)⟩ and J(v) ≥ ⟨v, p(u+ v)⟩.

2.3 Nonlinear Eigenfunctions

Let us begin by stating the nonlinear eigenvalue prob-
lem induced by a convex functional.

Definition 2 (Eigenfunctions and eigenvalues in-
duced by J(u)) An eigenfunction u induced by the

functional J(u) admits the following equation,

λu ∈ ∂J(u), (9)

where λ ∈ R is the corresponding eigenvalue.

The analysis of eigenfunctions related to non- quadratic

convex functionals was mainly concerned with the to-
tal variation (TV) regularization. In the analysis of the
variational TV denoising, i.e. the ROF model from [37],

Meyer [34] has shown an explicit solution for the case of
a disk (an eigenfunction of TV), quantifying explicitly
the loss of contrast and advocating the use of TV −G

regularization. Within the extensive studies of the TV-
flow [1,2,7,24] eigenfunctions of TV (referred to as cal-
ibrable sets) were analyzed and explicit solutions were

given for several cases of eigenfunction spatial settings.
In [15] an explicit solution of a disk for the inverse-
scale-space flow is presented, showing its instantaneous

appearance at a precise time point related to its radius
and height.

Geometric understanding of TV eigenfunctions

In [1] a connection between the eigenvalue λ and the
perimeter to area ratio is established for the total-variation
(TV) case. Let us recall this relation. The TV functional

is defined by

JTV (u) = sup
∥φ∥L∞(Ω)≤1

∫
Ω

udivφdx, (10)

with φ ∈ C∞
0 . For a convex set A ⊂ R2 let fA be the

indicator function of A where f(x) = 1 for any x ∈ A
and zero otherwise. If fA is an eigenfunction (admits
Eq. (9)) with respect to the TV functional then

λ =
P (A)

|A|
, (11)

with P (A) the perimeter of the set A and |A| its area.

2.4 The TV Transform

In [25] a generalization of eigenfunction analysis to the

total-variation case was proposed. We would like to de-
compose and process an input image f(x) ∈ BV (where
BV is the space of bounded variations in which JTV is

finite). This is done through TV gradient descent in
the following way. Let u(t;x) be the TV-flow solution
[1], which stands for the gradient descent of the total
variation energy JTV (u), with initial condition f(x) :

∂tu = −p, p ∈ ∂JTV (u), u(t = 0) = f(x). (12)

The TV spectral representation (referred to also as TV

transform) is defined by

ϕ(t;x) := t∂ttu(t;x), (13)

where ∂ttu is the second time derivative of the solution

u(t;x) of the TV flow (12).
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We briefly discuss the regularity of ϕ. In [7] a com-

prehensive analysis is presented for the TV flow in RN .
A strong solution is shown for the case f ∈ L2(RN ) (Th.
2). Moreover, time regularity (Section 7 of [7]) based on

semigroup estimates yields that:

ut(t) ∈ L2(RN ) for f ∈ L2(RN ), t ≥ ε, ∀ε > 0,

and also

ut(t) ∈ L2(RN ) for f ∈ BV (RN ), t ≥ 0.

Note that a finite extinction time T is shown to hold
for the TV-flow [1], where for all initial conditions f ∈
L2(RN ) there exists T ≥ 0 such that ∀t > T , ut ≡ 0.

As ϕ can be a measure in the time domain we are
mostly concerned with the integral form

Φt1,t2(x) :=

∫ t2

t1

ϕ(t;x)dt, 0 ≤ t1 < t2 < ∞. (14)

This type of integration appears in the reconstruction
formula (17) below as well as in all types of filters for-
mulated by equations (18) - (22). Using integration by

parts we have

Φt1,t2 = ut(t2)t2 − ut(t1)t1 − u(t2) + u(t1).

Thus we conclude that Φt1,t2 ∈ L2(RN ) for any t1 ≥ 0
with f ∈ BV (RN ), or for any t1 > 0 with f ∈ L2(RN ).

In any spatial discrete setting the input f is naturally
of bounded variation and the integrals are well defined.

For a broader study on one-homogeneous spectral

representations see [14]. Some regularity results pre-
sented in [14], related to the finite dimensional case,
are summarized in Section 2.6, where it is shown that

ϕ ∈
(
W 1,1

loc (R+,Rn)
)∗

, in which expressions as in (16)

below are admissible.
For f(x) admitting (9), with a corresponding eigen-

value λ, one obtains a gradient flow (12) with the solu-

tion

u(t, x) = (1− λt)+f(x), (15)

where (q)+ = q if q > 0 and 0 otherwise. See e.g. [7] (Th.
4) for a broader discussion and analysis. The spectral
response becomes

ϕ(t;x) = δ(t− 1/λ)f(x), (16)

where δ(·) denotes a Dirac delta distribution. This should
be understood as having the spectral representation
with a concentrated measure at t = 1

λ , or that f(x)

can be recovered by Φt1,t2 with an integration over a
small time range, t2 − t1 = ∆t, where t1 < 1

λ < t2.
In the general case, ϕ yields a continuum multiscale

representation of the image, generalizing structure-texture

decomposition methods like [34,36,5]. For simplicity we

assume signals with zero mean f̄ = 1
Ω

∫
Ω
f(x)dx = 0.

One can reconstruct the original image f ∈ BV by:

f(x) =

∫ ∞

0

ϕ(t;x)dt. (17)

Given a transfer function H(t) ∈ R, image filtering can
be performed by

fH(x) :=

∫ ∞

0

H(t)ϕ(t;x)dt. (18)

Simple useful filters are ones which either retain or di-

minish completely scales up to some cutoff scale. The
(ideal) low-pass-filter (LPF) can be defined by Eq. (18)
with H(t) = 1 for t ≥ tc and 0 otherwise, or

LPFtc(f) :=

∫ ∞

tc

ϕ(t;x)dt. (19)

Its complement, the (ideal) high-pass-filter (HPF), is
defined by

HPFtc(f) :=

∫ tc

0

ϕ(t;x)dt. (20)

Similarly, band-(pass/stop)-filters are filters with low
and high cut-off scale parameters (t1 < t2)

BPFt1,t2(f) :=

∫ t2

t1

ϕ(t;x)dt, (21)

BSFt1,t2(f) :=

∫ t1

0

ϕ(t;x)dt+

∫ ∞

t2

ϕ(t;x)dt. (22)

The spectrum Sf (t) corresponds to the amplitude of
each scale of the input f :

Sf (t) := ∥ϕ(t;x)∥L1(Ω) =

∫
Ω

|ϕ(t;x)|dx. (23)

In Fig. 1 an example of spectral TV processing is
shown with the response of the four filters defined above

in Eqs. (19) through (22).

2.5 Generalized Transform

In [13] the spectral TV framework was generalized in
several ways. First the theory was extended to a wider
class of one-homogeneous functionals.

For the general gradient flow of a one-homogeneous
functional J , where J admits the condition of Section
2.2, we have

∂tu(t) = −p(t), p(t) ∈ ∂J(u(t)), u(0) = f, (24)

the spectral transform ϕ(t), the eigenfunction response,

the reconstruction and the filtering, Eqs. (13), (15),
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Input f S1(t)

Low-pass High-pass

Band-pass Band-stop

Fig. 1 Total-variation spectral filtering example. The input
image (top left) is decomposed into its ϕ(t) components, the
corresponding spectrum S1(t) is on the top right. Integration
of the ϕ’s over the t domains 1, 2 and 3 (top right) yields
high-pass, band-pass and low-pass filters, respectively. The
band-stop filter (bottom right) is the complement integration
domain of region 2. Taken from [13].

(16), (17), (18) all generalize in a straightforward man-

ner, retaining the same expressions.

A new spectrum was defined by

S2(t) = t

√
d2

dt2
J(u(t)) =

√
⟨ϕ(t), 2tp(t)⟩, (25)

for which an analogue of the Parseval identity can be

derived

∥f∥2 =

∫ ∞

0

S2(t)
2 dt.

An orthogonality property was shown

⟨ϕ(t), u(t)⟩ = 0, ∀t > 0. (26)

An overview of these ideas with relations to some clas-
sical signal processing methods are presented in [26].

2.6 Some Regularity Results

A comprehensive analysis of one-homogeneous trans-

forms is still under way. However, in [14] several results

were established for the finite dimensional setting (spa-

tially discrete, time continuous). We summarize them
here.

Let J be a proper, convex, lower semi-continuous,
absolutely one-homogeneous function on Rn, (J : Rn →
R). We use the gradient flow as in (24) with arbitrary

initial condition f ∈ Rn. Here we show the more general
case, where the null space is not restricted. N (J) will
denote the nullspace of J

N (J) = {u ∈ Rn|J(u) = 0},

and P0 is the projection operator onN (J). The spectral
representation is

ϕ(t) = t∂ttu(t),

where u(t) is the solution of (24).

Proposition 1 (Finite extinction time) There ex-

ists a time T < ∞ such that u(T ) determined via (24)
meets

u(T ) = P0(f).

This can be shown by observing that the time derivative

of the square L2 norm of u(t) is strictly positive as long
as u is not in N (J). A complete proof is in Prop. 3 of
[14].

Moreover, based on the theory of gradient flows (cf.

[23]), we have that ∂tu(t) ∈ L∞. We can thus state a
regularity result for u(t) and ϕ(t).

Proposition 2 (Regularity of u and ϕ) The func-

tion u : R+ → Rn is Lipschitz continuous. The spectral
representation ϕ satisfies

ϕ ∈
(
W 1,1

loc (R
+,Rn)

)∗
.

Essentially it is shown that the integral∫ ∞

0

v(t) · ϕ(t)dt = −
∫ ∞

0

(t∂tv(t) + v(t))∂tu(t)dt

is well defined for any test function v ∈ W 1,1
loc (R+,Rn).

More details are in Propositions 2 and 4 in [14]. Similar
arguments lead to showing the reconstruction of the
input data by

f = P0(f) +

∫ ∞

0

ϕ(t)dt, (27)

and for expressing a filtering operation (w0, w(t)), where
w0 ∈ R and w(t) ∈ W 1,1

loc , by

fw = w0P0(f) +

∫ ∞

0

w(t)ϕ(t)dt, (28)
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which can be expressed through integration by parts

also as

fw = w0P0(f)−
∫ ∞

0

(tw′(t) + w(t))∂tu(t)dt.

With the preliminary settings and definitions in place
we can now continue to the main contributions of the

paper concerning generalized s.i.p’s.

3 A semi-inner-product for convex functionals

Let us define a semi-inner-product for convex function-
als, in a similar manner to Definition 1. As we will show

later, a function which admits the properties below may
not be unique. Therefore, in a similar manner to the
subdifferential, we allow the semi-inner-product to be

a set of possibly more than one element. We denote by
[u, v]J an element and by {[u, v]J} the set of admissible
s.i.p.’s. We will later see for the one-homogeneous case

that when a specific subgradient of the second argument
is chosen the s.i.p. is unique.

Definition 3 (Semi-inner-product of a convex func-
tional, partial homogeneity) Let J be a convex
functional J : X → R+ ∪ {∞} defined on a Banach

space X . A semi-inner-product with partial homogene-
ity on X is a real function [u, v]J on X × X with the
properties:

1. (Linearity in the first argument)

[u1 + u2, v]J = s+ q, s ∈ {[u1, v]J}, q ∈ {[u2, v]J}.

2. (Homogeneity in the first argument)

[αu, v]J ∈ {α[u, v]J}, α ∈ R.

3. (Functional-inducing)

[u, u]J = J2(u).

4. (Cauchy-Schwarz-type inequality)√
|[u, v]J [v, u]J | ≤ J(u)J(v). (29)

A stricter definition, with homogeneity in both ar-

guments is defined by

Definition 4 (Semi-inner-product of a convex func-

tional, full homogeneity) Following the same nota-
tions of Def. 3, [u, v]J is a semi-inner-product with full
homogeneity if it admits all the properties of Def. 3 and

in addition:

5. (Homogeneity in the second argument)

[u, αv]J ∈ {α[u, v]J}.

3.1 Semi-inner-product formulations

It can be verified that for functionals of the form

JH(u) = ∥u∥2H, (30)

with {∥ · ∥H, ⟨·, ·⟩H} a Hilbert-space norm and inner-
product, respectively, a semi-inner-product in the sense
of Def. 3 is:

[u, v]JH := ⟨u, v⟩H∥v∥2H. (31)

However, our main focus of the paper is devoted to

functionals not based on a Hilbert-space but on smooth-
ing, discontinuity preserving functionals such as the
total-variation or the total-generalized-variation. Those

functionals are extremely useful in processing images
and many other types of signals with inherent disconti-
nuities, such as depth-maps or optical-flow fields. Those
functionals are one-homogeneous and therefore a full

homogeneity semi-inner-product can be defined.

Theorem 1 Let J be a convex one-homogeneous func-
tional, admitting the conditions defined in Section 2.2,

and p(v) ∈ ∂J(v) a subgradient. Then a corresponding
semi-inner-product with full homogeneity in the sense
of Def. 4 is

[u, v]
p(v)
J := ⟨u, p(v)⟩J(v), (32)

where ⟨·, ·⟩ is the duality product of u ∈ X and p(v) ∈
X∗.

Proof Linearity and homogeneity in the first argument
are straightforward consequences of using the duality
product. We now want to show the property of homo-

geneity in the second argument. We use Eqs. (2) and
(5) to have p(v) ∈ ∂J(v) and p(αv) ∈ ∂J(αv) with the
relation p(αv) = sgn(α)p(v) and therefore

[u, αv]
p(αv)
J = ⟨u, p(αv)⟩J(αv)

= ⟨u, sgn(α)p(v)⟩|α|J(v)
= α[u, v]

p(v)
J ∈ {α[u, v]J}.

Using (4) we get [u, u]
p(u)
J = ⟨u, p(u)⟩J(u) = J2(u).

Finally for the Cauchy-Schwarz property, using (7) we

have ∀p(u) ∈ ∂J(u), J(v) ≥ |⟨v, p(u)⟩| and ∀p(v) ∈
∂J(v), J(u) ≥ |⟨u, p(v)⟩|, therefore

|[u, v]p(v)J | = |⟨u, p(v)⟩|J(v) ≤ J(u)J(v)

and also

|[v, u]p(u)J | = |⟨v, p(u)⟩|J(u) ≤ J(v)J(u).

As noted in the proof, for the one-homogeneous s.i.p.
a classical Cauchy-Schwarz inequality holds

|[u, v]p(v)J | ≤ J(u)J(v). (33)

As an example, let us take the Lq norm, JLq (u) =
∥u∥Lq , for 1 < q < ∞. Then p(u) = |u|q−2u∥u∥1−q

Lq and

Eq. (32) coincides with (1).
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3.2 Generalized notions of angle and orthogonality

With the s.i.p. one can define an angle between func-
tions u and v. For brevity, we will omit the superscript
p(v) when the context is clear. In the one-homogeneous

case, using the above inequality, we can define the angle
between u and v (for u ̸= 0, v ̸= 0, J(u) > 0, J(v) > 0)
by

angle(u, v) := cos−1
(

[u,v]J
J(u)J(v)

)
. (34)

Note that there is no symmetry in the above definition,
so in general angle(u, v) ̸= angle(v, u).

For a symmetric angle expression, there are two

main options, an algebraic mean,

anglesym−a(u, v) := cos−1
(

1
2 ([u,v]J+[v,u]J )

J(u)J(v)

)
, (35)

and a geometric mean (which also applies for the gen-

eral convex case, in which the inequality of (29) holds),

anglesym−g(u, v) := cos−1
(

S([u,v]J ,[v,u]J )
J(u)J(v)

)
, (36)

where S(a, b) := sgn(ab)
√
|ab| is a signed square-root.

Orthogonality of two functions can be expressed as
having an angle of π

2 between them. In the case of the

nonsymmetric angle of (34) we refer to u as orthogonal
to v if 0 ∈ {[u, v]J} and to v as orthogonal to u if
0 ∈ {[v, u]J}.

Definition 5 (Full orthogonality (FO)) We assume
u ̸= 0, v ̸= 0, J(u) > 0, J(v) > 0. (u, v) are fully or-

thogonal if 0 ∈ {[u, v]J} and 0 ∈ {[v, u]J}.

3.3 A semi-inner-product of degree q

A slight generalization of the s.i.p. defined above is a
semi inner product of degree q. Essentially the norm and
Cauchy-Schwarz properties are raised to the q’s power.

The formal definition is as follows.

Definition 6 (Semi-inner-product of degree q of

a convex functional) Let J be a convex functional
J : X → R+ ∪ {∞} defined on a Banach space X . A
semi-inner-product of degree q on X is a real function

[u, v]J,q on X × X with the properties:

1. (Linearity in the first argument)

[u1+u2, v]J,q = s+q, s ∈ {[u1, v]J,q}, q ∈ {[u2, v]J,q},

2. (Homogeneity in the first argument)

[αu, v]J,q ∈ {α[u, v]J,q}, α ∈ R,

3. (Functional-inducing)

[u, u]J,q = J2q(u),

4. (Cauchy-Schwarz-type inequality)√
|[u, v]J,q · [v, u]J,q| ≤ Jq(u)Jq(v).

We examine more closely the s.i.p. of degree half (q =
1
2 ) abbreviated h.s.i.p. For brevity we denote a special
symbol for it

⌊u, v⌋J := [u, v]J,1/2.

For the h.s.i.p. property 3 in Def. 6 becomes ⌊u, u⌋J =
J(u), and property 4 becomes ⌊u, v⌋J⌊v, u⌋J ≤ J(u)J(v).

In the case of square Hilbert-space functionals, Eq.

(30), we get

⌊u, v⌋JH = ⟨u, v⟩H =
[u, v]JH

JH(v)
.

We will now examine the one-homogeneous case.

Proposition 3 Let J be a convex one-homogeneous func-
tional and p(v) ∈ ∂J(v) a subgradient. Then a corre-
sponding semi-inner-product of degree 1/2 in the sense

of Def. 6 is

⌊u, v⌋p(v)J := ⟨u, p(v)⟩. (37)

Proof The proof is mainly similar to the one of Th.
1. For the third property we use Eq. (4) and for the

fourth property, using (7), we have |⌊u, v⌋p(v)J | ≤ J(u)

and |⌊v, u⌋p(v)J | ≤ J(v).

Note that the s.i.p. of (32) is simply the h.s.i.p. multi-
plied by J(v),

[u, v]
p(v)
J = ⌊u, v⌋p(v)J J(v). (38)

Following Eqs. (4), (5), (7) we have for the one-
homogeneous h.s.i.p. the following properties:

⌊u, u⌋J = J(u), (39)

⌊u, αv⌋J ∈ {sgn(α)⌊u, v⌋J}, R ∋ α ̸= 0, (40)

|⌊u, v⌋J | ≤ ⌊u, u⌋J = J(u), ∀v ∈ X . (41)



8 Guy Gilboa

3.4 Relation to Bregman distance

We will now show the close connection between the
Bregman distance (also called Bregman divergence) and

the s.i.p. in the one-homogeneous case.

Let us first recall the Bregman distance definition

[10]. For a convex functional J and a subgradient p(v) ∈
∂J(v), the (generalized) Bregman distance is

D
p(v)
J (u, v) := J(u)− J(v)− ⟨u− v, p(v)⟩. (42)

This is not necessarily a distance in the standard sense,

as it is not necessarily symmetric and does not admit
the triangle inequality, however it is guaranteed to be
non-negative and it is identically zero for u = v. For

J the square L2 norm we get the Euclidean distance
squared,

D∥·∥2(u, v) = ∥u− v∥2.

Other known similarity measures, such as the KL- di-
vergence or the Mahalanobis distance, can also be de-
rived from (42) with appropriate functionals [6]. This

measure has been widely used in the theoretical analy-
sis of classification, clustering and convex optimization
algorithms, see e.g. [6,17,30,19]. Specifically for image

processing, a significant branch of studies has presented
iterative variational solutions, new evolution formula-
tions and numerical solvers based on the Bregman dis-

tance, especially in relation to total-variation and other
one-homogeneous regularizing functionals [35,15,29,41,
33], see a recent review of the topic in [12].

In the one-homogeneous case we use the relation
J(v) = ⟨v, p(v)⟩ and the expression in (42) simplifies to

D
p(v)
J (u, v)|( 1-hom) = J(u)− ⟨u, p(v)⟩. (43)

It is straightforward in this case to infer the relation to
the s.i.p. and h.s.i.p.,

D
p(v)
J (u, v)|( 1-hom) = J(u)− [u,v]

p(v)
J

J(v)

= J(u)− ⌊u, v⌋p(v)J .
(44)

An interesting interpretation of the Bregman distance
is with respect to the angle between the functions u and
v,

D
p(v)
J (u, v)|( 1-hom) = J(u) (1− cos(angle(u, v))) , (45)

with the angle defined in (34). With this expression we
can immediately get the upper and lower bounds

0 ≤ D
p(v)
J (u, v) ≤ 2J(u).

Moreover, the interpretation of the Bregman distance
is of having direct relation to the angle between the

functions; the Bregman distance is zero for zero angle

and is monotonically increasing with angle, reaching the

maximum at angle(u, v) = π.
An extension of this relation which applies to the

general convex case is not known at this point. We now

define the final notions needed for the decomposition
theorem.
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Fig. 2 LIS example for the L1 norm.

Definition 7 (Linearity in the subdifferential (LIS))
(u, v) are linear in the subdifferential if for any R ∋
{α1, α2} ≠ 0 there exist p(α1u+α2v) ∈ ∂J(α1u+α2v),
p(α1u) ∈ ∂J(α1u), p(α2v) ∈ ∂J(α2v), such that

p(α1u+ α2v) = p(α1u) + p(α2v). (46)

(LIS) implies the h.s.i.p. is linear in the second argu-

ment. If the pair (v1, v2) admit the (LIS) condition
then there exist 3 subgradient elements p(α1v1+α2v2),
p(α1v1), p(α2v2) such that for all u ∈ X we have

⌊u, α1v1 + α2v2⌋p(α1v1+α2v2)
J

= ⌊u, α1v1⌋p(α1v1)
J + ⌊u, α2v2⌋p(α2v2)

J .
(47)

This is shown by writing the left-hand-side, according

to (37), as ⟨u, p(α1v1 + α2v2)⟩ and using (46).
We give a simple example of two signals admitting

(LIS) in the case of J being the L1 norm, for the 1D case

within the unit interval Ω = [0, 1]. Let f(x) be a real
function in Ω, f : Ω → R. We define the following two
functions: u(x) = f(x) if x ∈ [0, 0.5) and 0 otherwise,

v(x) = f(x) if x ∈ [0.5, 1] and 0 otherwise. Then it can
be verified that u and v are (LIS). Any other partition
Ω1 ⊂ Ω, Ω2 = Ω \Ω1 for u and v will produce similar

results, see Fig. 2.
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Definition 8 (Independent functions) (u, v) are in-

dependent functions if they are fully orthogonal (FO)
and linear in the subdifferential (LIS), according to Def.
5 and Def. 7, respectively.

We shall now show that for one-homogeneous func-
tionals, all functions which are (LIS) are also (FO) and
are therefore independent.

Proposition 4 Let J be a convex one-homogeneous func-
tional. If the pair (u, v) are (LIS) according to Def.
7, then (u, v) are (FO) and therefore are independent

(Def. 8).

Proof From (41) we have

J(u) ≥ ⌊u, u+ v⌋J ,

using (LIS), for some fixed subgradients p(u+ v), p(u),

p(v), we have

J(u) ≥ ⌊u, u+ v⌋p(u+v)
J = ⌊u, u⌋p(u)J + ⌊u, v⌋p(v)J

= J(u) + ⌊u, v⌋p(v)J .

We therefore have ⌊u, v⌋p(v)J ≤ 0. On the other hand,

taking α1 = 1, α2 = −1 in Def. 7 we get that also u,−v
are (LIS). In this case, using (40), we reach ⌊u, v⌋p(v)J ≥
0. We can conclude that ⌊u, v⌋p(v)J = 0 hence

{[u, v]J} ∋ ⌊u, v⌋p(v)J J(v) = 0.

The same arguments hold for the pair (v, u).

An interesting characteristic of independent func-

tions is that they reach the upper bound of the triangle
inequality (Eq. (8)).

Proposition 5 Let J be a convex one-homogeneous func-
tional. If (u, v) are independent (Def. 8) then J(u+v) =
J(u) + J(v).

Proof

J(u+ v) = ⌊u+ v, u+ v⌋p(u+v)
J

LIS
= ⌊u, u⌋p(u)J + ⌊u, v⌋p(v)J + ⌊v, u⌋p(u)J + ⌊v, v⌋p(v)J
FO
= ⌊u, u⌋p(u)J + ⌊v, v⌋p(v)J

= J(u) + J(v).

3.5 S.I.P. for eigenfunctions

We will analyze now the case of nonlinear eigenfunc-

tions (functions admitting (9)). Here we restrict our-
selves to the simple case of L2 embedding, where the
duality product is the L2 inner product (or ℓ2 in fi-

nite dimensions), denoted by ⟨·, ·⟩2. Under this setting,
things simplify considerably. For λu ∈ ∂J(u) we get

J(u) = ⟨u, p(u)⟩2 = ⟨u, λu⟩2 = λ∥u∥22,

where ∥ · ∥2 is the 2 norm. For semi-inner-products we

will often use the subgradient element corresponding to
the eigenfunction, this will be denote by a superscript
λvv. We therefore have the following relations for the

s.i.p and h.s.i.p: For the s.i.p., for any u ∈ X , λvv ∈
∂J(v),

λ2
v⟨u, v⟩2∥v∥22 = [u, v]λvv

J ∈ {[u, v]J}, (48)

and for the h.s.i.p.,

λv⟨u, v⟩2 = ⌊u, v⌋λvv
J ∈ {⌊u, v⌋J}. (49)

Another consequence is related to orthogonality.

Proposition 6 1. For any u ∈ X , λvv ∈ ∂J(v), λv >
0, ∥v∥2 > 0,

[u, v]λvv
J = 0 iff ⟨u, v⟩2 = 0.

2. For p(u) = λuu ∈ ∂J(u), p(v) = λvv ∈ ∂J(v),
λu, λv > 0, ∥u∥2, ∥v∥2 > 0, the following statements
are identical:

(a) [u, v]λvv
J = 0,

(b) [v, u]λuu
J = 0,

(c) ⌊u, v⌋λvv
J = 0,

(d) ⌊v, u⌋λuu
J = 0,

(e) ⌊u, v⌋λvv
J + ⌊v, u⌋λuu

J = 0,
(f) ⟨u, v⟩2 = 0.

Proof The first part is an immediate consequence of Eq.

(48). For the second part, let us write the equivalent of
statements (a) through (e):

(A) [u, v]λvv
J = λ2

v⟨u, v⟩2∥v∥22,
(B) [v, u]λuu

J = λ2
u⟨v, u⟩2∥u∥22,

(C) ⌊u, v⌋λvv
J = λv⟨u, v⟩2,

(D) ⌊v, u⌋λuu
J = λu⟨v, u⟩2,

(E) ⌊u, v⌋λvv
J + ⌊v, u⌋λuu

J = (λv + λu)⟨u, v⟩2.

We observe that in the case where both u and v are

eigenfunctions all expressions reduce to the L2 inner
product up to a strictly positive multiplicative factor
and are therefore identical when ⟨u, v⟩2 = 0.

4 Decomposition

Let f1, f2 be two functions in X and f = f1 + f2. Nat-
urally a decomposition from a single measurement f
into two signals f1 and f2 is not possible in general.

One should use some a priori knowledge and assump-
tions on the signals (depicted in the choice of the reg-
ularizer J). A classical decomposition problem is how

and under what conditions we can decompose f into
f1 and f2. This issue is significant in signal processing,
for instance when f1 is the signal and f2 is noise or for

structure-texture decomposition, where f1 is structure
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and f2 is texture (assumed to be additive). We will try

to give an answer to this using the spectral filtering
technique and conditions from the above framework.

We can now state a sufficient condition for spectral

filtering to perfectly decompose f into f1 and f2.

Theorem 2 Let J be a one-homogeneous functional as
defined in Section 2.2. If f1, f2 are eigenfunctions with
corresponding eigenvalues λ1, λ2, with λ1 < λ2, inde-

pendent in the sense of Def. 8, then f = f1 + f2 can
be perfectly decomposed into f1 and f2 using the fol-
lowing spectral decomposition: f1 = LPF 1

λc
(f), f2 =

HPF 1
λc
(f) with λ1 < λc < λ2.

Proof The theme of the proof is to show that we get an
additive spectral response

ϕ(t, x) = δ(t− 1/λ1)f1(x) + δ(t− 1/λ2)f2(x)

and therefore the spectral filtering proposed above (Eqs.
(16),(19), (20) ,which hold for the general one-homogeneous
case) decomposes f correctly.

We examine the gradient flow (24) with initial con-
ditions f = f1 + f2. Let us show that given the above
assumptions the solution is

u(t, x) = (1− λ1t)
+f1(x) + (1− λ2t)

+f2(x). (50)

It is easy to see that for (50) the first time derivative is

∂tu(t, x) =


−λ1f1(x)− λ2f2(x), 0 ≤ t < 1/λ2

−λ1f1(x)− λ2f2(x), 1/λ2 ≤ t < 1/λ1

0, 1/λ1 ≤ t

We now need to check the subdifferential. We do
this for 0 ≤ t < 1/λ2, similar results can be shown for
the other time intervals. We denote by p(·) an element

in ∂J(·).

∂J(u(t)) = ∂J ((1− λ1t)f1(x) + (1− λ2t)f2(x))
LIS
∋ p((1− λ1t)f1(x)) + p((1− λ2t)f2(x))
Eq.(5)
= p(f1(x)) + p(f2(x))

Eq.(9)
= λ1f1(x) + λ2f2(x)

= −∂tu(t, x).

We can conclude that two eigenfunctions with dif-
ferent eigenvalues which are independent, with respect
to the regularizer J , can be perfectly decomposed using

spectral decomposition based on J .

4.1 Decomposition measures

The conditions stated in the above theorem are some-
what strict. We would like to have a soft measure for the

independence of two signals which attains the value 1
for completely independent signals (in the sense of Def.
8) and 0 for completely correlated signals. It is expected

that this measure will indicate how well two signals can
be decomposed.

4.2 Orthogonality measure

Let an orthogonality indicator be defined by

O(u, v) = 1−
√

|[u, v]J [v, u]J |
J(u)J(v)

. (51)

We have that 0 ≤ O(u, v) ≤ 1 and O = 1 in the
orthogonal case, if either [u, v]J = 0 or [v, u]J = 0.

For the fully correlated case v = au, a > 0, we get
O(u, au) = 0.

4.3 LIS measure

Here a more direct relation to the (LIS) property is

defined. We measure how different is p(u + v) from
p(u) + p(v). This is done in terms of h.s.i.p.,

E(u, v) := ⌊u+ v, u⌋J + ⌊u+ v, v⌋J − ⌊u+ v, u+ v⌋J
= ⟨u+ v, p(u) + p(v)− p(u+ v)⟩.

(52)

We show below that E ≤ J(u + v). Also we have that

E → 0 as p(u) + p(v) → p(u+ v). A possible indicator
L for the (LIS) property can therefore be

L(u, v) := 1− |E(u, v)|
J(u+ v)

. (53)

Let us show that

E(u, v) ≤ J(u+ v).

From (41) we have ⌊u + v, u⌋J ≤ ⌊u + v, u + v⌋J and
⌊u + v, v⌋J ≤ ⌊u + v, u + v⌋J , where ⌊u + v, u + v⌋J =
J(u + v). Note also that for the fully correlated case,

v = au, a > 0, we get L(u, au) = 0.
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u1 v f1 = u1 + v
O(u1, v) = 0.988
L(u1, v) = 0.988

HPF (f1) LPF (f1)

u2 v f2 = u2 + v
O(u1, v) = 0.716
L(u1, v) = 0.667

HPF (f2) LPF (f2)

Fig. 3 Separating blobs of different scale using spectral fil-
tering.

5 Experiments

The following experiments are performed to show the

behavior of the soft measures described in the previous
section for the TV functional. We compare the orthog-
onality measure O(u, v), Eq. (51), and the LIS measure

L(u, v), Eq. (53).

In Figs. 3 and 4 two cases are shown. In the first one

(Fig. 3 top 2 rows) f1 = u1+v, where u1 and v are two
blobs which are spatially well separated. The decompo-
sition indicators are close to 1 (O(u1, v) = L(u1, v) =

0.988). A high-pass-filter, as defined in (20), was used
to separate u1 with a cutoff between the peaks, see the
green line in Fig. 4, bottom left, which visualizes the fil-

ter transfer function. One can observe a relatively good
separation (with some residual of v as it is not a pre-
cise eigenfunction). In Fig. 4 the spectrum of u1 and v

are shown and the spectrum of their sum superimposed
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Fig. 4 Spectra of the different blob signals.

on the spectrum of f1 (bottom left), which are close to
identical.

The case of overlapping signals u2 and v, f2 = u2 +
v, is shown as well with significantly lower O and L
indicators and lower quality decomposition (the spectra

are also not additive).

In Fig. 5 u and v are constructed to be precise dis-

crete eigenfunctions. One can see numerically the point-
wise ratio at the top (black, dashed) p(u)

u which is prac-
tically constant (for all x). This means that u is indeed

an eigenfunction of TV and admits p(u) = λu. The
same goes for v on the top right side. We denote by d
the distance between the centers of the peak parts of

u and v (shown on the second row on the left). The
eigenfunction u is displaced from being at d = 0 to
d = 25, where for each d the measures O(u, v) and

L(u, v) are computed. Both indicators are well corre-
lated, with L yielding slightly sharper results. As can
be expected, as the peaks of the functions u and v are
farther apart, decomposition is easier and both indi-

cator approach 1. Several instances of the composition
f = u+ v are shown on the bottom row on the right.

In Figs. 6 and 7 a 2D experiment is shown. Here d is
the distance between the centers of two discs of identical
size (radius). In the continuous case, in an unbounded

domain R2 a disc is an eigenfunction of TV. Here we
have a bounded domain and cannot produce discretely
real discs, so this is an approximation. As those discs

are identical (radius and height), in principle they can-
not be decomposed through spectral filtering since they
have the same eigenvalue. However we can compare this

case to a theoretical analysis done by Bellettini et al [7].
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Fig. 5 Comparison of O(u, v) and L(u, v) for the 1D case of
u and v being 2 precise TV eigenfunctions in a finite domain.

Top row: u (blue), p(u) (green) and p(u)

u
(black, dashed)

are shown on the left, v, p(v) and p(v)

v
(right). Middle row

(from left), f = u + v and d is shown which is the distance
between the centers of u and v. An example (d = 21) of p(u),
p(v), p(u+ v) and the difference p(u+ v)− p(u)− p(v) (from
top subplot, respectively). As the difference vanishes the LIS
measure L(u, v) approaches 1. Bottom row, O(u, v) (blue)
and L(u, v) (red, dashed) as a function of the distance d. On
the right, several cases of f for different values of d.

It was shown in [7] that for two identical discs of ra-
dius r the sum of the two discs is also an eigenfunction

(meaning they admit (LIS)) if d ≥ πr. Therefore the
values of O(u, v) and L(u, v) are plotted as a function
of d

r , with critical points at d
r = 2, that is the discs are

just separated but touch each other at a single point,
and at d

r = π, the theoretical critical distacne. As can
be seen, O and L are almost identical here, however the

critical point may not be that significant and as soon
as the discs do not touch each other, d

r > 2, the values
approach 1 fast. One can notice in the numerical exam-

ples for several d values on the right of Fig. 7 that for

d/r
0 1 2 3 4 5

0

0.2

0.4

0.6

0.8

1

O(u,v)
L(u,v)
d/r=2
d/r=π

Fig. 6 Experiment of 2 identical discs. Top - illustration of
the discs u and v of radius r and the distance d between the
centers of the discs. Bottom O(u, v), Eq. (51), and L(u, v),
Eq. (53), as a function of d/r.

d
r = 4 > π indeed we get that p(u + v) − p(u) − p(v)

almost vanishes numerically.

6 Conclusion

In this work several new concepts were presented, which

can be helpful in future theoretical understanding and
better employment of convex regularizers. The proper-
ties of semi-inner-products for convex functionals were

stated, following the s.i.p. of Lumer for normed spaces.
Essentially, linearity and homogeneity are kept in the
first argument, the functional is induced by the s.i.p.

and a Cauchy-Schwartz-type property holds. The s.i.p.,
however, does not behave linearly with respect to the
second argument. For non-smooth functionals s.i.p.’s

are similar to the subdifferential and may contain sev-
eral elements (in this case it is unique when a subgra-
dient element is chosen).

For the one-homogeneous case a general formulation

of the s.i.p. was given. This yields natural definitions of
orthogonality and angles between 2 functions, with re-
spect to regularizing functionals like TV or TGV. The

relation to the Bregman distance was shown, where in
the one-homogeneous case the Bregman distance be-
tween two functions can be expressed in terms of the

angle between those functions.
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f, d=0 p(u) p(v) p(u+v) p(u+v)-p(u)-p(v)

f, d=r p(u) p(v) p(u+v) p(u+v)-p(u)-p(v)

f, d=2r p(u) p(v) p(u+v) p(u+v)-p(u)-p(v)

f, d=2.2r p(u) p(v) p(u+v) p(u+v)-p(u)-p(v)

f, d=3r p(u) p(v) p(u+v) p(u+v)-p(u)-p(v)

f, d=4r p(u) p(v) p(u+v) p(u+v)-p(u)-p(v)

Fig. 7 A few examples of the 2 discs experiment. Each col-
umn (from left): f = u + v, p(u), p(v), p(u + v), p(u + v) −
p(u)−p(v). The rows are results of different distances between
the discs, d/r = 0, 1, 2, 2.2, 3, 4.

An extension of s.i.p.’s to general degrees was sug-

gested, where the case of half-semi-inner-products (h.s.i.p.)
was further developed. Finally, it was shown that when
the h.s.i.p. is linear in the second argument one can de-

compose two eigenfunctions (with different eigenvalues)
perfectly, using the spectral filters proposed in [25,13].
As the conditions for perfect decomposition are quite

strict, two soft indicators based on s.i.p.’s and h.s.i.p.’s
were suggested. Their goal is to measure how close we
are to fulfilling those conditions. Initial experiments in-

dicate both measures are useful in assessing the sep-
arability of signals with a dominant scale (where the
one based on the (LIS) property yields slightly sharper

results).
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